Products of Greek letter elements dug up from the third Morava stabilizer algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of Greek Letter Elements Dug up from the Third Morava Stabilizer Algebra

In [3], Oka and the second author considered the cohomology of the second Morava stabilizer algebra to study nontriviality of the products of beta elements of the stable homotopy groups of spheres. In this paper, we use the cohomology of the third Morava stabilizer algebra to find nontrivial products of Greek letters of the stable homotopy groups of spheres: α1γt, β2γt, 〈α1, α1, β p/p〉γtβ1 and ...

متن کامل

The First Cohomology Group of the Generalized Morava Stabilizer Algebra

There exists a p-local spectrum T (m) with BP∗(T (m))= BP∗[t1, . . . , tm]. Its Adams-Novikov E2-term is isomorphic to ExtΓ(m+1)(BP∗, BP∗), where Γ(m+ 1) = BP∗(BP )/ (t1, . . . , tm) = BP∗[tm+1, tm+2, . . . ]. In this paper we determine the groups ExtΓ(m+1)(BP∗, v −1 n BP∗/In) for all m,n > 0. Its rank ranges from n + 1 to n2 depending on the value of m.

متن کامل

The Cohomology of the Morava Stabilizer Group

We compute the cohomology of the Morava stabilizer group S2 at the prime 3 by resolving it by a free product Z=3 Z=3 and analyzing the \relation module."

متن کامل

The Cohomology of the Morava Stabilizer Algebras

In this paper we continue our study of the groups ExtBp, Be(BP,, v 2 t BP,/I,). In [5] it was shown that these groups are essentially isomorphic to the cohomology of a certain Hopf algebra S(n) which we called the Morava stabilizer algebra since it was implicitly introduced in [6]. The structure of S(n) was analyzed in [8] where we defined a filtration on it and described the associated graded ...

متن کامل

The First Cohomology Group of the Generalized Morava Stabilizer Algebra (draft Version)

There are p-local spectra T (m) with BP∗(T (m)) = BP∗[t1, . . . , tm]. Its Adams-Novikov E2-term is isomorphic to ExtΓ(m+1)(BP∗, BP∗), where Γ(m + 1) = BP∗(BP )/ (t1, . . . , tm) = BP∗[tm+1, tm+2, . . . ]. In this paper we determine the groups ExtΓ(m+1)(BP∗, v −1 n BP∗/In) for all m, n > 0. Its rank ranges from 2n + 1 to n2 depending on the value of m.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2012

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2012.12.951